The generator matrix

 1  0  0  1  1  1  1  1  1  3  1  1 X+3  1  X 2X+3  6  1  1  1  1  1  1  1 X+3 X+6  1  1  3  1 X+3  1  1  1  1  1 2X  1  1  1  1  1  1  1  1  1  1 2X+6  1  1  1  1 2X  1
 0  1  0  3  1  4  2  X  8  1 2X+4 2X+2  1 X+3  1 2X+6  1  6 X+6 X+7 X+1 2X+5 X+5 2X+7  1  1 2X+8 2X+7  1 X+2 X+3 X+3  7 2X+8 X+4 2X+4  1 2X+6  5  3 2X+8 X+7  7  8  8  4 X+5  1 X+1  5 X+8 2X+4  1  0
 0  0  1 2X+4 2X+1  3 X+8 X+5 2X+6  4 2X+2  4  2 2X X+6  1 X+7  7 2X+8  6 X+1 X+7  2  5 X+8 2X+6 X+3 X+4 2X+8 2X+3  1 2X+4 2X+5  3 2X+3 2X X+7 X+2 2X+2  X  8 X+3 X+5  7 2X+1  8 X+6  3 X+5 X+7  4  1 2X+7 2X

generates a code of length 54 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 102.

Homogenous weight enumerator: w(x)=1x^0+540x^102+852x^103+1818x^104+2306x^105+2022x^106+1626x^107+2452x^108+1458x^109+1650x^110+1750x^111+840x^112+972x^113+776x^114+498x^115+84x^116+16x^117+6x^119+8x^120+8x^123

The gray image is a code over GF(3) with n=486, k=9 and d=306.
This code was found by Heurico 1.16 in 0.566 seconds.